Linearization of an n-link Pendulum
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Assumptions and Notation:

e g; is the angle of link 7 relative to a vertical line (Beware, non-standard
notation: A straight joint does not need to have ¢; =0!)

e Center of mass m; is always at the end of the link i. So, m; is located at
(T4, i)
1 Positions, Velocities and Accelerations
The height is hence

y1 =licosq

Yo =l cosq1 + I3 cos g

n
b= licosq,

and the horizontal displacement is

n
Ty = Zi=1 l; sinq;
The angle around the center of mass is g;, obviously. We have velocities
. n .
Tn = Z¢=1 li (cos ¢;) Gi,
n
Un = — Zi:l li (sing;) gs,
and accelerations
n
Tn = Zi:l li (cos i) Gi — Li (sing;) 7,
n
o=, i (sing) i — Li (cos i) G-

The ones for the rotation are obvious.



2 Forces

We compute the forces and torques

Z Fixi = (Foi — Fogiyn)) »
Zk Fry; = (Fyz — Fyii+1)) — mig,
Zk T = — (I, o8 ¢;) Fyi + (lising;) Fyi + u;.
We insert into
m;%; = Z Fixi = (Fei — Foiign)) 5
m;i; = Z Freyi = (Fyi — Fyq1)) — mag,
0= Z T = — (licos q;) Fyi + (lising;) Fyi + u;.
For i = n, we have Fy ;1) = Fyi+1) = 0, and so we obtain for 1 <i <n
Fri =midi + Frip1) = En:mkfim
k=i

Fyi :miyl+F(z+1) lg:ka (yk 79)

— (li cos ;) <Z mkxk> + (lising;) (Z my, (Y —9)) + ;.

o
|



If we insert &j and §ji into the torque equation, we get

k
0=—(l;cosq) ka ZZJ cosq;)d; —1; (smqj)q2

n k
— (l;sing;) ka g—l—le (sing;) g; +1; (Cosqj)q'? + u;
k=i j=1
=u; — (l;sing;) g (Z mk)
k=i

n k
= Y e St [feosa)eos ) + (snge) s i

cos(g;—q;)

+[(singi)(cos q;) — (cos ;) (sing;)]g; )

sin(g; —q; )

=u; — (I;8ing;) g (ka> kale cos(qi — qj)d;
—kale sin(q )qu,

As we have defined our angles absolute, we have no Coriolis forces. We can
write the equations of motion by

M(q)§ + C(a)§* + g(q) =

where ¢ is a element-wise squared ¢. We obtain

kale(Sj hsin (¢ — q;)

= kalhli(shgk sin (q — qh) = lhl sm( — {h ka6h<k
k=1 k=1

=lplisin (g —qn) >

k=max(%,h)



n k
Min(q) = > _mi Y §i=nljli cos(q; — q;)
k=i j=1

n

= (mkljli) 5h§k COSs (Qi - Qj)

k=i
= lnlicos (¢i — qn) > midn<k
k=i
= lplicos (g —qn) Y M
k=max(i,h)

gi(a) = glisin (¢;) Z my.
k=i

We need these for the next step!

3 Linearization without Analytical Matrix In-
version

Clearly a linearization of simulator

d =M "'(q)(u—C(q)q’ - g(q))

would be very cumbersome in terms of derivatives. However, we know that the
energies can be approximated by second order Taylor expansion

) 1, ) 1, )
T(q,q) = iqTM(q)q ~s §qTM(qo)q,

U (a) = Ulao) + U’ (a0)(a — ao) + 5(a — 400" (o) (4 — o).

We can get these as well by

. 1 . . .

n n K2
U(a) =gy miyi=g» miy_lcosg,
i=1 k=1

i=1

which in this case will be easier to work with. Note that

U'(qo) = —g(qo),

and that U”(qo) is a stiffness matrix. Hence, we can obtain the linearized
system by

do(T-U) 9(T—U)
dt  0q oq '’

=M(qo)4 + U'(qo) + U"(q0)(a — qo)
= M(q0)4 — g(q0) + U"(qo)(qa — qq)-

u=



We realize that U”(qq) is a diagonal matrix with
n
Uji(a) = —glicos g; Z mg,
k=i
and, hence, we have a linearized simulator. We can formulate this system as a
differential equation of degree 1 with
P=q
4 =Mo 'g(do) + Mo~ 'Ug'do — MoUg'q + Mo~ 'u=p,

where Mg = M(qp) and Uj = U”(qop). As we have a linear system is holds for
piecewise constant actions u that

a) _ 1 (fae1—ae
p At \Pt+1 — Pt
and we can write

Q) I At-1\ (q (0
(Pt+1> R (‘At Mo 'Uy I o7 At Mo ') "
0 . .
+ At - (Molg(qo) N MolUé’qo> (Simulator Equation)

4 Linearization around the Balance Point

The balance point, i.e. all joints are directly straight and vertically aligned, is
described by qp = 0. We see that g(qo) = 0 and so the constant term in the
Simulator Equation vanishes. The computation of the Mass matrix simplifies
to

n

Min(do) = nls Z Mg,
k=max(i,h)

and

Ui(a) = —gl; ka-
k=1



